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Abstract By a 1oop:expansion around Parisi's mean-field theory for an king spin-glass it 
is shown that the overlap of the magnetization pailems belonging tp two different tem- 
peratures, T and T', "mishes to any order, , m = O ,  while the correlation overlap 
( s ~ s , ) ~ ( s ~ &  calculated to fikt loop order (and, for technical reasons, for dimensions d > 8 
only) is found to decay exponentially, with a characteristic length -(T- T')-'. 

, .  
Although the two main theoretical approaches to the spin-glass ( S G )  problem, the 
replica field theory (Mtzard et al 1987) and the phenomenological droplet theory 
(Bray and Moore,1987a, Fisher and Huse l9S6, 1988), rest on substantially different 
physical pictures and lead in many respects to sharply conflicting predictions, in some 
important problems they do show a surprising degree of agreement. One of these is 
the sensitivity of the spin-glass order to changes in the external parameters. This 
sensitivity, sometimes referred to as the chaotic nature of the SG phase, consists, among 
other things, in a complete reorganization of: the equilibrium magnetization patterns 
(s,) by the slightest change intemperature or by the addition of  an arbitrarily small 
external field, 4 a consequence, the overlap between two patterns belonging to two 
different temperatures T, T vanishes for any T # T': 

and that between patterns belonging to a' finite 'field h and to zero field, respectively, 
vanishes for any h:  

Here ( . . .>means thermal averaging, and the overbar average over the (symmetrically 
distributed) random couplings. Equations (1) a n d m  are to be contrasted with the 
fact that for strictly coinciding external parameters ( s , ) ~  is positive in the SG phase, by 
definition. Statements (1)and (2) have been known in~replica mean field theory (MFT) 
for a long time ((2) is implied by a result in Parisi 1983, while (1) is quoted by Binder 
and Young 1986 from an unpublished work by Sompolinsky), but they also naturally 
follow from the underlying assumptions of droplet theory (Bray and Moore 1987b, 
Fisher and Huse 198.6, 1988). Within this latter framework another aspect of so 
sensitivity has also been pointed out: infinitesimal changes in the extemal parameters 
upset not only the patterns but also the correlations. While at a given T.and h =0, the 
correlation overlaps like, for example, o(sisj) are generally believed to decay as a 
power of the distance between the sites i and j (another point on which the many, 
valley and droplet theories agree qualitatively), the overlaps between correlation 
functions belonging to two different temperatures 

(si)T.(sf)T= 87,r=O . .  (1) 

- ' $ h O = O . ,  . ( 2 )  
3~ . .  

ccr, = (srsj)r(sisj)T (3) 
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or to a finite resp. zero field 

are predicted to fall o f f  exponentially, with coherence lengths .$= and .$A0 that diverge 
in the limits T + T' and h + 0, respectively. In order to check whether these predictions 
are also borne out by the replica theory, one of the authors (Kondor 1989) calculated 
the correlation overlaps (3), (4) in aGaussian approximation, i.e. neglecting interactions 
between fluctuations, and found that C,, did indeed show the expected behaviour 
with a coherence length 5hp-h-2'3, but C , ,  remained power-like for any T, T'< 
Tc(.$TT.=co). While this sort of behaviour is not inconceivable, given (l), it is rather 
counterintuitive. In addition, it was proposed by Fisher and Huse (1988), and by Koper 
and Hilhorst (1988) that the sensitivity to control parameters may account for some 
of the effects seen in ageing experiments (Lundgren el aI 1983, Alba et al t987), and 
this raised the hope that measukements may perhaps discriminate between the two 
rival theories. 

The purpose of the present letter is to calculate Cr~r beyond the Gaussian approxi- 
mation and decide whether (i) the long range nature of C& is a genuine feature (as 
it is for T = T', Kondor et nl(1992)), or (ii) C,.,. becomes short-ranged once interactions 
are taken into account, which would eliminate the conflict between the two theories 
on this particular point, or (iii) a negative gap, i.e. an instability, is generated which 
destroys the whole many valley theory. Our main result is that (ii) ,is the case.and that 
in high enough dimensions the characteristic length associated with CTT goes as 
.$r.r-lT- TI-'. The technique we use to establish this result is perturbative, and as 
such it is confined to the dimensionality range above the upper critical dimension, 
d > 6.  For technical reasons the first-order (one loop) result we derive is, in fact, valid 
only in the even more restricted range d > 8. As will be explained below, in order to 
cover the range 6 < d < 8 we should go to second order which, though feasible, would 
take about an order of magnitude more algebra. In order to go below d = 6 we should 
abandon perturbation theory and resort to the renormalization group whose structure 
is, at the moment, poorly understood in the SG phase. All these limitations notwithstand- 
ing, there is very little doubt in our minds that the perturbative conclusion about the 
generation of a gap in the spectrum of Cr,,. remains valid down to the (unknown) 
lower critical dimension. 

Let us start by recapitulating~some of the relevant mean-field results. We consider 
two independent copies of the same Shemngton-Kirkpatrick (SK) (1975) system, one 
at temperature T, the other at T, with the same setof Gaussian random couplings Ju. 
The mean value & will be taken zero, the variance J i  = 1/N, so the critical temperature 
T,=l. For T and T' both in the vicinity of T, the application of the replica trick 
(Edwards and Anderson 1975) leads one to consider the following 'free energy' 
functional: 

where 
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The coupling constants w, U, y, U all, work out to be 1 for king-like spins (s = *l). 
Yet it is expedient to keep,them as essentially free’parameters, fortwo reasons. (i) On 
the MF level the free energy 9 with a generic set of coupling constants corresponds 
to an sK-like system for soft spins, with the critical temperature and the couplings 
being determined by the various cumulants of the local spin distribution. (ii) Above 
the upper critical dimension the finite range, model we wish to study can be mapped 
back onto MFT, with a new set of coupling constants. . ,  , 

The order parameters QF8 are determined by the extremum condition: 

(71 . &  . 
+ u ( ~ 3 ) e p = 0 .  .. 

The solution is easily found by <he following considerations: the upper left n / 2 k  n / 2  
block of Qap describes an ordinary SK spin-glass at temperature T, hence this block 
must be of the Parisi (1979) form. The same holds for the lower right n / 2 x  n / 2  block 
with T replaced by T’. The off-diagonal blocks describe the overlaps between these 
two’systems; at the extremum these overlaps must have a unique value: QeP = Q, 
VCY 4 n / Z  < p. Indeed, if this is so, the off-diagonalblocks do not influence the solutions 
in the diagonal ones, because, according to (7),  Q enters the equations for Q+, 
a, p < n / 2  or a, p> n / 2  always in combinations carrying a factor n, hence they drop 
out in the replica limit. If, on the contrary, we built any structure into~the off-diagonal 
blocks they would necessarily modify the solutions in the diagonal ones, which is 
clearly absurd: the act o,f comparing two systems at different temperatures cannot 
influence them. To find .Q we work out (7)  for a< n / 2 < p :  

(8) &.;+ W ( S + S ’ ) + : ~ ~ ~ +  U(s2+ss’+ s”) - ; (R+ R, ) }  = o 
where 

7 2  

W 2  
R = -lo’ Q’(x) dx = --+. . . 

and similarly for S’, R’, with T replaced by 7’. Obviouty d = 0 is a solution of (8) 
which immediately yields, in MF, the result (1). However, Q = 0 is not unique, additional 
roots come from the curly bracket in (8). To check the stability of the solutions is 
therefore vital. This is what we turn to now. 

The spectrum of fluctuations is given by the eigenvalues of the Hessian 

For 6 = 0 the Hessian McrD.rs has a block-diagonal structure. The upper left (a < p 4 
n / 2 ,  y < S < n / 2 )  and lower right ( n / 2 < a < p < n ; n / 2 <  y < S S n )  blocks describe 
the fluctuations of the Parisi order parameters at temperature T and T’, respectively 
which are known to be marginallystable.(De Dominicis and Kondor 1983). The middle 
block (as n / 2 <  p, -y< n / 2 <  6) describes the fluctuations of the overlap 6 about its 
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zero average value. This bIock has the same structure as the matrix diagonalized by 
Kondor (1989), whence we know that its smallest eigenvalue is 

(9) 

The sign of Amin depends on U/ wz. For Ising-like spins w = v = 1, so Amin = 0, in 
agreement with Kondor (1989). The question arises, however, whether there are 
soft-spin distributions for which the ratio U/ w2 deviates from unity. A little reflection 
shows that by an appropriate rescaling of Qap one can always keep w = v = 1, therefore 
the Q = 0 solution is always marginally stable in MFT. 

A side remark is in order here: following Parisi (1979) it has become customary 
to keep only the U term of the quartic couplings which is the one responsible for 
replica symmetry breaking. This truncated model works perfectly in the standard, 
T =  T', situation, in that it reproduces all quantities correctly to leading order in 7 

(Kondor et a/ 1992). In the present case, with T #  T', we see however, that putting 
U = 0 would produce a spurious instability. 

The eigenvalues of the middle block of the Hessian are the poles of the Fourier 
transform of the correlation function (3) in Gaussian approximation. The zero eigen- 
value just found means that for large distances C,. falls off like a power. As for the 
other solutions of (S), coming ffom the curly bracket, we find that for v / w 2 =  1 (i.e. 
in MFT) they are the same as Q=O above, and when short-range corrections make 
v / w 2 >  1 they become unstable. We do not need to consider them any more. 

Now we turn to the short-range corrections. The field-theoretic loop expansion 
around the Parisi solution has been applied to the standard T =  T' problem by De 
Dominicis et a/ (1991) and Kondor et al (1992). The technique we use is a straight- 
forward extension of that explained in these papers. In particular, the effective 
Lagrangian goveming fluctuations is formally the same as in equation (1) in Kondor 
et a/ (1992), with 7 replaced by re, (and with the completely irrelevant s-coupling 
dropped), so we do not need to display it here. 

The equation of state derived from that Lagrangian reads to first-loop order: 

where the propagators are given by 

( G - 1 ) . 5 . y s = ~ 2 ~ , p , ~ s + + ~ ~ , y ~ .  (11) 

We have already noted that if the CY S n /2<p  components of Q.+ vanish then M 
becomes block diagonal. By ( 1  l ) ,  so does G. But then from the CY < n f 2 < p components 
of (10) we immediately deduce that the l /z  terms give no contribution to the equatio? 
of state which, therefore, preserves its M F  form h,, = 0 (CY s n/2 < p), from which Q 
can be factorized out again. Moreover, it is clear that the same argument applies to 
any order: from the assumption 6 = O  it follows that the fluctuations in the T and T' 
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systems decouple y d  this guarantees that 6 = 0 is a solution indeed. ~~ Provided this 
solution is stable, Q -(sJT{sJT.=O is, therefore, an exact statement. 

Turning to the investigation of the fluctuation spectrum now we apply the trick of 
the large-p~expansion explained in De Dominicis ef al (1991) and Kondor et a1 (1992). 
The essence of the method is the trivial observation that in high enough dimensions 
the loop integrals are dominated by wavevectors which are. large compared with any 
characteristic mass in the problem. The resulting loopcorrections will be free of any 
IR divergences and, therefore can be absorbed into the coupling constants, whereby 
the loop-corrected theory is mapped backonto MFT. To get this mapping, it is sufficient 
to substitute the large-p expansion of the propagators (obtained by iteration directly 
from (1 1)) into (IO) and collect the coefficients of the .& Qm,Qp, terms to get the new 
w (to be called G),~that of the Q’, terms .to get the new U, etc. In addition, since the 
eigenvalue  we^ seek is already of the order ( T  - T‘)’, we can content ourselves with 
setting up this mapping for T =  T’, i.e. all we have to do is to extend the mapping 
written up in De Dominicis et aI (1991) to include the new couplings y and U. To 
cany out this calculation is fairly tedious but straightforward. We record only the result: 

. 

1 
i,= 7+-{(2~ - 0 + 2 ~ ) r , - 2 ~ ~ r ~ j  

z 

1 G = U +-{(6u’+3v2+ 12y2+6uu -24uy)1,+(12vw2+24yw2- 12uwz)16+ 12w418} 
z 

(12) 
1 J = y -- {(10y2 - 2u2-4uy -6uy)I4+ (4uw2 - 1 6 ~ ~ ’ -  2yw)16 - 8w4&} 
z 

1 c = U + -  { ( u ~  - 8~y)r;- syw2r61: 
z 

1~ 
. .  G = w +- z {( - ~ U W  - , 6 ~ ~ ) 1 , - 2 ~ ~ r , }  ~. I 

where 

The smallest squared ‘mass’ will then be given by an expression like (9)’with U and w 
replaced by t7 and G, respectively. To O( l/z) and with the bare v and w put to 1 it reads: 

0 3 )  
1 

22 
hmi. = - ( I  ir, -4&)( T - T ’ ) ~ .  

For d > 8 the prefactor is now positive, a finite mass obtains ‘which means that the 
correlation function ( s , s ~ ) ~ ( s , s ~ ) ~ .  falls off exponentially, with a characteristic length 

At d = 8 the mapping (12) goes singular, the loop-integral l8 blows up logarithmi- 
cally. The origin and consequences of this singularity have been discussed by several 
authors (Green et a[ 1983, Fisher and Sompolinsky 1985, De Dominicis et al 1991, 
Kondor et aI 1992) and are now well understood. The main message of these studies 
is that for 6 < d < 8, in the standard, T = T’, situation the leading terms in all quantities 
of interest (phase boundary, masses, order parameter, etc) are correctly predicted by 
an ‘effective’ Mmin which the U coupling is replaced by Ci= U + l /z constant x 

trr.- A;:;’- I T -  T’I-’. 
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and all the others are left at their bare values. This prescription cannot be taken over 
to Ami,, because, in contrast to the usual cases where U and y enter subleading terms 
only, here U/ w2 determines the leading term itself. 

Although the mapping (12) becomes singular at d = 8, C and G remain well defined 
down to d = 6. One might then be tempted to continue (13) to below d = 8. This would 
be all wrong. At the next, l/zz order the d =8 singularity will show up also in 6 and 
Z and, therefore, in order to find the correct exponent of Ami,, for 6 < d < 8 one should 
go to two-loop order. This is beyond the scope of the present letter. 

To conclude, we have shown that, at least in high dimensions, the correlation 
overlap is short ranged, with a characteristic length &.-IT- TI-'. 
Technical complications prevented us from going below d = 8 but we do not expect 
major surprises there: exponents will evidently change but we believe the expbnential 
decay remains. Details of this work, including closed formulae for the correlation 
functions and covering also the magnetic case mentioned in the introduction will be 
published elsewhere. 

One of the authors (IK) is obliged to C De Dominicis and G Parisi for valuable 
discussions and we greatly benefited from interaction with T Temesviri. This work 
was partially supported by the National Science Foundation OTKA Grant No 2090. 
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